Home   >   Faculty   >   Professor   >   Content
December 7, 2023
Xiao-Li Tan

 Curriculum Vitae



  Xiao-Li Tan,  

  PhD, Professor
  Institute of Life Sciences, Jiangsu University
  Fax: 86-511-88791923
  Email: xltan@ujs.edu.cn; xltan68@hotmail.com .
  Address: 301 Xuefu Road, Zhenjiang, Jiangsu 212013, P R China


2004-present, Institute of Life Sciences, Jiangsu University.   The main researches focused on functional genomics of oil rape.

2009-2010, Visiting scholar at Professor Ian A Graham’s lab in CNAP, Department of Biology, University of York, UK.

1998-2004, Northwest A&F University, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Master and PhD, The research was fatty acid metabolism and mapping.

1990—1998, Hybrid Rapeseed Research Center of Shaanxi Province, Research Assistant. Analysis the glucosinolate content in the meal of rapeseed with HPLC, the fat acid composition of rapeseed oil with GC and oil content of rapeseed with NMR, the quality breeding of rapeseed.

1986-1990, Northwest A&F University, Bachelor of Agronomy

Research Interests

1, Functional dissection of agronomic related gene in Brassica and molecular designed breeding

2, Regulation of fatty acids and oil biosynthesis in Brassica napus.

3, Research approach for functional genomics of allopolyploid.




Keming Zhu, Nannan Li, Xiangfeng Zheng, Rehman Sarwar, Yulong Li, Jun Cao, Zheng Wang and Xiaoli Tan*. Overexpression the BnLACS9 could increase the chlorophyll and oil content in Brassica napus. Biotechnology for Biofuels and Bioproducts (2023) 16:3. https://doi.org/10.1186/s13068-022-02254-3

Sarwar, R.Li, L. Yu, J. Zhang, Y.Geng, R. Meng, Q.Zhu,K.Tan, X.-L*. Functional Characterization of the Cystine-Rich-Receptor-like Kinases (CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. International Journal of Molecular Sciences. 2023, 24, 511. https:// doi.org/10.3390/ijms24010511


Geng, R., Shan, Y., Li, L., Shi, C.-L., Zhang, W., Wang, J., Sarwar, R., Xue, Y.-X., Li, Y.-L., Zhu, K.-M., Wang, Z., Xu, L.-Z., Aalen, R.B., Tan, X.-L*., CRISPR-mediated BnaIDA editing prevents silique shattering, floral organ abscission and spreading of Sclerotinia sclerotiorum in Brassica napus, PLANT COMMUNICATIONS (2022), doi: https://doi.org/10.1016/j.xplc.2022.100452.

Li-Na Ding, Yue-Tao Li, Yuan-Zhen Wu, Teng Li, Rui Geng, Jun Cao, Wei Zhang and Xiao-Li Tan*. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. International Journal of Molecular Sciences. 2022, 23, 16200. https://doi.org/10.3390/ijms232416200.

Rehman Sarwar , Ke-Ming Zhu , Ting Jiang , Peng Ding , Yue Gao , and Xiao-Li Tan* (2022)DELLAs directed gibberellins responses orchestrate crop development: A brief review. Crop Science, https://doi.org/10.1002/csc2.2082.

Li-Na Ding, Rui Liu, Teng Li, Ming Li, Xiao-Yan Liu, Wei-Jie Wang, Yan-Kun Yu, Jun Cao and Xiao-Li Tan* (2022) Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyaninmore mutant. Biotechnology for Biofuels and Bioproducts. 15:55 https://doi.org/10.1186/s13068-022-02155-5

Sarwar R, Geng R, Li L, Shan Y, Zhu K-M, Wang J and Tan X-L* (2022) Genome-Wide Prediction, Functional Divergence, and Characterization of Stress-Responsive BZR Transcription Factors in B. napus. Front. Plant Sci. 12:790655.doi: 10.3389/fpls.2021.790655


Zhao, J. , Jin, C. , Geng, R. , Xue, Y. , & Tan, X. . (2021). Development and application of molecular markers for tsw (thousand-seed weight) related gene bnagrf7.c02 in brassica napus. Oil, Crop Sciencedoi:10.1016/j.ocsci.2021.07.003. 6(3), 6.

Jiawang Mao, Yanhua Yang, Ningning Wang, Keming Zhu, Yulong Li, Zheng Wang & Xiaoli Tan*. (2021). Molecular Analysis Associated with Early Flowering Mutant in Brassica napusJournal of Plant Biology, 64(3), 227-241Doi:10.1007/s12374-021-09299-1

Li-Na Ding, Teng Li, Xiao-Juan Guo, Ming Li, Xiao-Yan Liu, Jun Cao, and Xiao-Li Tan*. (2021). Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects. Journal of Agriculture and Food Chemistry, (2021), https://dx.doi.org/10.1021/acs.jafc.0c07351.

YuLong Li YanKun Yu KeMing Zhu LiNa Ding Zheng WangYanHua YangJun Cao LiZhang XuYaoMing LiXiaoLi Tan*. (2021) Downregulation of MANNANASE7 gene in Brassica napus L. enhances silique dehiscence resistance. Plant Cell Rep. 40:361-374DOI 10.1007/s00299-020-02638-5


Sundus Zafar, Min-Qiang Tang, Sheng-Yi Liu, Xiao-Li Tan*. (2020)Candidate genes association study to identify allele-specific SNP marker of ω-3 fatty acid in Brassica napus. Journal of Plant Physiology 248: 153159, https://doi.org/10.1016/j.jplph.2020.153159.

Zheng Wang, LuYue Ma, Xiao Li, FengYun Zhao, Rehman Sarwar, Jun Cao, YuLong Li, LiNa Ding, KeMing Zhu,YanHua Yang, XiaoLi Tan*. (2020) Genomewide identification of the NPR1like gene family in Brassica napus and functional characterization of BnaNPR1 in resistanceto Sclerotinia sclerotiorum. Plant Cell Reports. https://doi.org/10.1007/s00299-020-02525-z

Keming ZhuWeiwei Zhang, Rehman Sarwa , Shuo Xu , Kaixia Li, Yanhua Yang ,Yulong Li , Zheng Wang , Jun Cao, Yaoming Li and Xiaoli Tan*. (2020)

Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genetics and Molecular Biology, 43, 1, e20190305, DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2019-0305

Zheng Wang, Wen-Hua Zhang, Lu-Yue Ma, Xiao Li, Feng-Yun Zhao, Xiao-Li Tan* (2020) Overexpression of Brassica napus NPR1 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Physiological and Molecular Plant Pathology. 2020, https://doi.org/10.1016/j.pmpp.101460.

Li-Na Ding# Shou-Lai Gu#, Fu-Ge Zhu, Zhong-Yan Ma, Juan Li, Ming Li, Zheng Wang and Xiao-Li Tan*. (2020) Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biology. 2020, 20:21, https://doi.org/10.1186/s12870-020-2240-x.


Ding, Li-Na#; Li, Ming#; Guo, Xiao-Juan#; Tang, Min-Qiang#; Cao, Jun; Wang, Zheng; Liu, Rui; Zhu, Keming; Guo, Liang; Liu, Shengyi*; Tan, Xiao-Li*. (2019). Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnology JournalDOI:10.1111/pbi.13289. *Corresponding authors

Zheng Wang, Feng-Yun Zhao, Min-Qiang Tang, Ting Chen, Ling-Li, Bao, Jun Cao, Yu-Long Li, Yan-Hua Yang, Ke-Ming Zhu, Shengyi Liu*, Xiao-Li Tan* 2019BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Plant Science. https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1016/j.plantsci.2019.110362. *Corresponding author .

Sundus Zafar, Min-Qiang Tang, Yu-Kang Wang, Rehman Sarwar, Sheng-Yi Liu, Xiao-Li Tan*, 2019Candidate genes-association study to identify loci related to oleic acid in Brassica napus using SNP markers and their heterologous expression in yeast, Plant Physiology and Biochemistry, https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1016/j.plaphy.2019.11.026. *Corresponding author

Sundus Zafar, Yu Yan-Kun, Ke-Ming Zhu, Wei-Jie Wang and Xiao-Li Tan* 2019Overexpression of Nicotiana tabacum HSP17.6 Enhances Abiotic Stress Tolerance in Brassica napus International Journal of Agriculture & BiologyDOI: 10.17957/IJAB/15.1273. *Corresponding author

Xiao-Na Tan, Kaixia Li, Zheng Wang, Keming Zhu, Xiaoli Tan *, Jun Cao*.(2019).  A Review of Plant Vacuoles: Formation, Locating Proteins, and Functions. Plants, 8, 327; doi:10.3390/plants8090327. *Corresponding authors.

Wang Z, Ma L-Y, Cao J, Li Y-L, Ding L-N, Zhu K-M, Yang Y-H and Tan X-L* (2019) Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. Front. Plant Sci. 10:1314. doi: 10.3389/fpls.2019.01314. *Corresponding author

LiNa Ding, Ming Li, WeiJie Wang, Jun Cao, Zheng Wang, KeMing Zhu, YanHua Yang, YuLong Li, Xiao-Li Tan*. (2019), Advances in plant GDSL lipases: from sequences to functional Mechanisms. Acta Physiologiae Plantarum. 41:151. https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1007/s11738-019-2944-4. *Corresponding author.

Rui LiuLi-Na DingMing LiWei CaoYu-Kang WangWei-Jie WangYan-Kun YuZheng WangKe-Ming ZhuXiao-Li Tan*. (2019). Characterization of a Rapeseed Anthocyanin-More Mutant with Enhanced Resistance to Sclerotinia sclerotiorum. J Plant Growth Regul.  https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1007/s00344-019-10011-4. *Corresponding author.

Sundus Zafara, Yu-Long Li, Nan-Nan Li, Ke-Ming Zhu, and Xiao-Li Tan*2019),Recent advances in enhancement of oil content in oilseed cropsJournal of Biotechnology 301 (2019) 3544. *Corresponding author.

Wang Z, Bao L-L, Zhao F-Y, Tang M-Q, Chen T, Li Y, Wang B-X, Fu B, Fang H, Li G-Y, Cao J, Ding L-N, Zhu K-M, Liu S-Y and Tan X-L* (2019). BnaMPK3 Is a Key Regulator of Defense Responses to the Devastating Plant Pathogen Sclerotinia sclerotiorum in Oilseed Rape. Frontier Plant Science. 10:91. doi: 10.3389/fpls.2019.00091, *Corresponding author.

LiNa Ding#, XiaoJuan Guo#, Ming Li, ZhengLi, Fu Su‑Zhen Yan, KeMing Zhu, Zheng Wang and XiaoLi Tan*. (2019). Improving seed germination and oil contents by regulating the GDSLtranscriptional level in Brassica napus. Plant Cell Reports 38:243–253. https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1007/s00299-018-2365-7, *Corresponding author.

Ke-Ming Zhu, Shuo Xu, Kai-Xia Li, Sheng Chen, Sundus Zafar, Wei Cao, Zheng Wang, Li-Na Ding, Yan-Hua Yang , Yao-Ming Li & Xiao-Li Tan*. (2019) . Transcriptome analysis of the irregular shape of shoot apical meristem in dt (duo tou) mutant of Brassica napus L.Mol Breeding 39:39, https://elkssl0a75e822c6f3334851117f8769a30e1cehall.v.ujs.edu.cn/10.1007/s11032-019-0943-1. *Corresponding author.

Yu-Kang Wang#, Yu-Long Li#, Zheng-Li Fu, Qi Huang, Xu-Guo Yue, Yong Wang, Ke-Ming Zhu, Zheng Wang, Yong-Shen Ge, Zhong-Hua Wang and Xiao-Li Tan. (2019), Transcriptome Analysis of Brassica napus Wax-deficient Mutant Revealed the Dynamic Regulation of Leaf Wax Biosynthesis is Associated with Basic pentacysteine 6. International Journal of Agriculture and Biology,21: 1228‒1234. DOI: 10.17957/IJAB/15.1015. *Corresponding author.


Zhu Keming, Li Kaixia, Li Juan, Xu Shuo, Sundus Zafar and Tan Xiaoli* (2018), The Cyanobacterium hemoglobin (CHb) promotes the growth of Bacteria, Yeast and Brassica napus, and enhances submergence resistance of Brassica napus. Pak. J. Bot., 50(6): 2429-2434, 2018. *Corresponding author.


Zhi-Yan Zhang#, Guan-Ying Li#, Jie-Li Wang, Xiao-Juan Guo, Zheng Wang, Xiao-Li Tan*. (2017). Establishment of Rapeseed (Brassica napus L.) cotyledon transient transformation system for gene function analysis. Pak. J. Bot., 49(6): 2227-2233. *Corresponding authors

Wang, J.-L#., Tang, M.-Q.#, Chen, S., Zheng X.-F., Mo, H.-X., Li, S.-J., Wang, Z., Zhu, K.-M., Ding, L.-N., Liu, S.-Y., Li, Y.-H*., Tan, X.-L*. (2017),Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnology Journal15:1024–1033.doi:10.1111/pbi.12696. *Corresponding authors


H. Zhang J. ZhouX. ZhengZ. Zhang, Z. Wang, and X. Tan*Characterization of a Desiccation Stress Induced Lipase Gene from Brassica napus L.J. Agr. Sci. Tech. 201618: 1129-1141. *Corresponding author.


Chen J, Tan R-K, Guo X-J, Fu Z-L, Wang Z, Zhang Z-Y,TanX-L*. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves andDeveloping Seeds of Brassica napus.2015, PLoSONE10(5): e0126250. doi:10.1371/journal.pone.0126250. *Corresponding authors

X. L. Tan*, Q. Huang, R. K. Tan , L. Wu , Zh. Y. Zhang , Zh. Wang , Ch. M. Lu and X. F. Li *(2015) Cloning and Functional Characterization of a Fatty Acyl-AcylCarrier Protein Thioesterase Gene (BnFatB) inBrassicanapus L.J. Agr. Sci. Tech. 17:1-11.*Corresponding authors


Yu L#, Tan X#, Jiang B, Sun X, Gu S, Han T, Hou W*. (2014). A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation. PLoS NE 9(7): e100144. doi:10.1371/journal.pone.0100144. # Contributed equally.

Zheng Wang*, Yu Chen, Hedi Fang, HaifengSh, Keping Chen, Zhiyan Zhang, Xiaoli Tan*. Selection of Reference Genes for Quantitative Reverse-Transcription Polymerase Chain Reaction Normalization in Brassica napus under Various Stress Conditions. Mol Genet Genomics, 2014, DOI: 10.1007/s00438-014-0853-1. *Corresponding authors

Wang, Z*; Fang, H; Chen, Y; Chen, K; Li, G; Gu, S; Tan, X*. Overexpression of BnWRKY33 in Oilseed Rape Enhances Resistance to Sclerotiniasclerotiorum. Molecular Plant Pathology.2014, 15(7): 677-689. *Corresponding authors.

Tan X*, Yan S*, Tan R, Zhang Z, Wang Z, Chen J. Characterization and Expression of a GDSL-Like Lipase Gene from Brassica napus in Nicotianabenthamiana. Protein Journal 2014, 33:18–23. *Corresponding authors.

Tan XL*, Zheng XF, Zhang ZY, Wang Z, Xia HC, Lu CM,and Gu SL*, Long Chain Acyl-Coenzyme A Synthetase 4 (BnLACS4) Gene from Brassica napus Enhances the Yeast Lipid Contents. Journal of Integrative Agriculture 2014, 13(1): 54-62. *Corresponding authors.


Tan,XL ; Ma, ZY; Li, H ; Jia, HH; Wei, P; Zhang, ZY; Wang, Z; Zhao, DH Characterization of the Growth, Quality and Antibiotics Inhibition in Scenedesmusobliquus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY. 2013, 7( 2): 845-852.

Current Research Projects

1, Functional characterization of three Long Chain Acyl CoA Synthetase
(LACS) which involved in lipid biosynthesis in Brassica napus(31271760),NSFC,2013,1 - 2016,12.

2, Dissection the molecular mechanism of the branching in Brassica napus with the non-branching mutant, (31471527),NSFC,2015,1- 2018,12. 

3,The formation and evolution rule  of elite rapeseed germplasm. (2016YFD0100305),National Key R&D Program. 2016,7-2020,12.

4, The new technology for gene stacking technology.(2016YFD0101904),National Key R&D Program. 2016,7-2020,12.


1, Use of a class of acyl-coenzyme A synthetase genes from plant which increase the oil content in transgenic yeasts. (ZL 200910232919.2)

2, The application of a growth-promoting gene in microorganism and plant. (ZL200910232918.8)

3, An Efficient Method for Extraction of Lipases from Brassica napus.(ZL 200910235070.4)  

Available PhD research project

Wax biosynthesis and branching development in Brassica napus.

We have screened a mutant with deficient wax biosynthesis and fewer branches of Brassica napus with activation tagging approach. The activated gene or knocked out gens related to the mutant phenotype will cloned by TAIL-PCR approach. And mechanism of wax biosynthesis and branching in Brassica napus will revealed by the methods of bioinformatics, molecular genetics, biochemistry and cell biology. The qualified PhD candidates are welcome to join this project.

Dissection the melecular mechanism of seeds size in Brassica napus.